Documentation
Number Theory
Analytic Number Theory
Mangoldt Function

Mangoldt Function

Definition

Definition

nZ,n1\forall n \in \mathbb{Z},n \ge 1 we define

Λ(n)= {logpif n=pm for some prime p and some m1,0:otherwise\Lambda(n) = \ \left\{ \begin{array}{cl} \log p & \text{if } n=p^m \text{ for some prime }p \text{ and some }m\ge1,\\ 0 & : \text{otherwise} \end{array} \right.

Here is a table of values for the Mangoldt function:

n:n:12345678910
Λ(n):\Lambda(n):0log2\log 2log3\log 3log2\log 2log5\log 50log7\log 7log2\log 2log3\log 30