DocumentationNumber TheoryAnalytic Number TheoryMangoldt FunctionMangoldt Function Definition Definition∀n∈Z,n≥1\forall n \in \mathbb{Z},n \ge 1∀n∈Z,n≥1 we defineΛ(n)= {logpif n=pm for some prime p and some m≥1,0:otherwise\Lambda(n) = \ \left\{ \begin{array}{cl} \log p & \text{if } n=p^m \text{ for some prime }p \text{ and some }m\ge1,\\ 0 & : \text{otherwise} \end{array} \right. Λ(n)= {logp0if n=pm for some prime p and some m≥1,:otherwise Here is a table of values for the Mangoldt function: n:n:n:12345678910Λ(n):\Lambda(n):Λ(n):0log2\log 2log2log3\log 3log3log2\log 2log2log5\log 5log50log7\log 7log7log2\log 2log2log3\log 3log30Mobius FunctionChebyshev's functions